Parallel Stochastic Estimation
on Multicore Platforms

By: Olov Rosen
June 2015
Uppsala University
Distributed by Coronet Books
ISBN: 9789155491918
191 Pages, Illustrated
$62.50 Paper original

Description:

The main part of this thesis concerns parallelization of recursive Bayesian estimation methods, both linear and nonlinear such. Recursive estimation deals with the problem of extracting information about parameters or states of a dynamical system, given noisy measurements of the system output and plays a central role in signal processing, system identification, and automatic control. Solving the recursive Bayesian estimation problem is known to be computationally expensive, which often makes the methods infeasible in real-time applications and problems of large dimension. As the computational power of the hardware is today increased by adding more processors on a single chip rather than increasing the clock frequency and shrinking the logic circuits, parallelization is one of the most powerful ways of improving the execution time of an algorithm. It has been found in the work of this thesis that several of the optimal filtering methods are suitable for parallel implementation, in certain ranges of problem sizes. For many of the suggested parallelizations, a linear speedup in the number of cores has been achieved providing up to 8 times speedup on a double quad-core computer. As the evolution of the parallel computer architectures is unfolding rapidly, many more processors on the same chip will soon become available. The developed methods do not, of course, scale infinitely, but definitely can exploit and harness some of the computational power of the next generation of parallel platforms, allowing for optimal state estimation in real-time applications.

Coronet
Boooks Inc. 311 Bainbridge Street, Philadelphia, Pennsylvania USA
19147 (215) 925-2762 - (215) 925-1912 (FAX)